In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the form $y = ab^x$. Students look at multiple representations of exponential functions, including graphs, tables, equations, and context. They learn how to move from one representation to another. Students learn that the value of a is the "starting value" of the function—a is the y-intercept or the value of the function at x = 0. b is the growth (multiplier). If b > 1 then the function increases; if b is a fraction between 0 and 1 (that is, 0 < b < 1), then the function decreases (decays). In this course, values of b < 0 are not considered.

Example 3

Write an equation that represents the function in this table.

Week	Weight of Bacterial
	Culture (g)
1	756.00
2	793.80
3	833.49

The exponential function will have the form $y = ab^x$, where y is the weight of the bacterial culture, and x is the number of weeks. The multiplier, b, for the weight of the bacterial culture is 1.05 (because $793.80 \div 756 = 1.05$ and $833.49 \div 793.80 = 1.05$, etc.). The starting point, a is not given because we are not given the weight at Week 0. However, since the growth is 1.05 every week, we know that $(1.05) \cdot$ (weight at Week 0) = 756.00g. The weight at Week 0 is 720g, thus a = 720. We can now write the equation:

$$v = 720 \cdot 1.05^x$$
.

where y is the weight of the bacterial culture (g), and x is the time (weeks).

Based on each table below, find the equation of the exponential function $y = ab^x$. 3.

a.

x	f(x)
0	1600
1	2000
2	2500
3	3125

X	у
1	40
2	32
3	25.6

The new Bamo Super Ball has a rebound ratio of 0.97. If you dropped the ball from a 4. height of 125 feet, how high will it bounce on the tenth bounce?

Based on each graph below, find the equation of the exponential function $y = ab^x$. 5.

3. a.
$$y = 1600(1.25)^x$$

b.
$$y = 50(0.8)^x$$

5. a.
$$y = 3(\frac{5}{3})^x$$
 b. $y = 40(\frac{1}{3})^x$

b.
$$y = 40(\frac{1}{3})^x$$